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The goal of so-called first principles calculations is to solve the
many electron Schrödinger equation:

ĤΨ(r1, ..., rN) = EΨ(r1, ..., rN), (1)

where

Ĥ =
∑
i
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i +
∑
i

V (ri ) +
∑
i

∑
j>i

1

|ri − rj |
(2)

in atomic units.

V (r) is the electrostatic potential generated by a number of
positively charged (classical) nuclei with positions Ri .

This is the fundamental equation of everday matter, with the
(good) approximation that the nuclei behave more-or-less
classically.
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Unfortunately, this equation is absolutely impossible to solve
for all but the smallest systems (∼10 electrons), due to the
complexity of the many electron wavefunction Ψ (a complex
valued function of 3N variables).

Density functional theory (DFT) recasts this problem into one
involving the electron density n(r) as the fundamental
quantity (a real valued function of 3 variables).

In principle, this recasting is exact, and one can obtain any
property of interest of the system; in practice it involves
approximations, and is limited to the ground state.

The good news is that it is remarkably accurate given the
approximations, and you can get lots of interesting
information about a material by knowing the ground state.
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Why density “functional” theory?

A functional is essentially a function of a function; takes a
function as input and gives a number as output.

Example: Expectation value of the energy of a many electron
wave function Ψ:

EΨ[Ψ] =

∫
d3N rΨ∗ĤΨ (3)

In DFT, the energy is instead a functional of the density,
which is minimised by the ground state density n0

E[n] is unknown, but we know good approximations to it.
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Standard approach to DFT is based on the work of Kohn and
Sham, who proposed the following decomposition of the total
energy functional:

E [n] = TKS [n] + V [n] + EH [n] + EXC [n] (4)

V [n] is the energy of the electron density in the external
potential V (r).

EH[n] is the electrostatic interaction of the density with itself
(N.B. includes unphysical self-interaction of each electron
with itself)

TKS [n] is the kinetic energy of a system of non-interacting
electrons with the same density as the real system.

EXC [n], is called the “exchange–correlation” functional. It
contains all the extra stuff left over, including corrections to
the kinetic energy, and is the thing that is approximate.
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Two basic flavours of EXC [n]:

Local density approximation (LDA): We assume that the
inhomogeneous electron density behave locally like a
homogeneous electron density (which can be calculated).

Generalised Gradient Approximation (GGA): Adds terms
which depend on the gradient. Numerous forms, but in
general improves most properties.
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How to find n0? Minimise E with respect to n, or equivalently,
with respect to the Kohn–Sham orbitals.

This leads to the Kohn–Sham equations, which is what DFT
codes actually solve:

(
−1

2
∇2 + V (r) +

∫
n(r ′)

r − r ′
+ V (r)

)
ψ(r) = εψ(r) (5)

This has the form of a set of one-electron Schrodinger
equations, but with an effective potential that depends on the
solutions

These equations much be solved iteratively until
self-consistency is reached.

N.B. n(r) is the sum of the densities of the N lowest energy
solutions of these equations (recall the Pauli exclusion
principle; no two electrons can occupy the same orbital).
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KS orbitals are solutions of one-electron Schrodinger-like
equations; implies that they obey Bloch’s theorem in a
periodic potential (e.g. a crystal), i.e. they have the form

ψnk(r) = unk(r)e ikr ; unk(r + R) = unk(r) (6)

where R is a lattice vector.

This allows us to model the small, periodically repeated bit of
the solid instead of the whole thing
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To do calculations on a computer, we need to discretise the
KS equations

Functions are periodic so expand as sums of plane waves (c.f.
Fourier analysis)

unk =
∑
G

cGnke
iG ·x , (7)

that fit into your simulation box, then solve for co-efficients of
the plane waves.

This equality only holds if an infinite number of planewaves is
used; in practice, the series is truncated at some finite value.

The level of this truncation is specified by the ENCUT
keyword in VASP.
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Inert core electrons are localised, and are therefore hard to
describe using plane-waves.

Valence electron wavefunctions oscillate rapidly near the
nucleus, to maintain orthogonality with core functions.

Solve both these problems by replacing core electrons with
pseudopotentials.
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The pseudopotentials in VASP are called PAW potentials, and are
contained in the POTCAR file.
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