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1 Introduction

The aim of this short course is to give you some idea of the different approaches used to model
charge transport in photovoltaic devices. The style of presentation reflects my background in
continuum mechanics (e.g. fluid mechanics, elasticity etc.) and so is rather different to that
encountered in a solid-state physics course. Nevertheless despite the difference in approach
the resulting models are the same and I hope that you will find it helpful to see things from a
different perspective. It must be emphasised that the list of modelling approaches described
here is far from comprehensive.

After the Introduction the material is divided into 4 further sections. In Section 2 we
briefly review the equilibrium statistical mechanics of a semiconductor as this has some
bearing on the non-equilibrium models that we consider in the subsequent 3 sections. In
Section 3 we briefly discuss hopping models of charge transport and relate these to continuum
drift-diffusion model of the same process. In Section 4 we elaborate on the drift-diffusion
model introduced in the previous section and apply this to the particular example of an
n-p homojunction used as a solar cell. Furthermore we show that the current-voltage curve
predicted by modelling this device using a drift-diffusion model is accurately approximated
by a Shockley equivalent circuit. This leads us, in Section 5, to discuss Shockley equivalent
circuit models of solar cells and their use in inferring device physics from current-voltage
data.

2 Equilibrium electron and hole distributions in a semi-

conductor

We begin by briefly discussing the equilibrium distribution of charge carriers in a conventional
(inorganic) semiconductor before going on to consider charge transport processes. The band
diagram of a semiconductor (i.e. the allowed electron energy levels) is characterised by an
energy gap between the valence band and conduction band in which there are no permissable

∗Mathematical Sciences, University of Southampton, Southampton SO17 1BJ.

1



electron states. This is illustrated in figure 1. Although it is usual to think of the valence and
conduction bands being continuous in energy they are in fact comprised of a large number
of states, separated by very small energies. We therefore need to account for the density of
states per unit energy in both conduction and valence bands. These are defined as follows

Number of states per unit volume in conduction
band with energy between E and E + δE

≈ gc(E)δE, (1)

Number of states per unit volume in valence
band with energy between E and E + δE

≈ gv(E)δE, (2)

where δE is a small increment in energy. Now since electrons are fermions they obey a
Fermi-Dirac distribution at equilibrium. Thus the probability of a particular state, with
energy E, being occupied at temperature T is given by

P(E, T ) =
1

1 + exp((E −Ef )/kBT )
(3)

where Ef is a constant, termed the Fermi level, which is chosen so that the sum of the prob-
abilities over all possible states gives the total number of electrons in the system. Assuming
we know the density of states we can now work out what the electron density in the valence
band nv and in the conduction bands nc using (1)-(3)

nc =

∫

∞

Ec

gc(E)

1 + exp((E − Ef ))/kBT )
dE, (4)

nv =

∫ Ev

−∞

gv(E)

1 + exp((E − Ef)/kBT )
dE. (5)

Note that the conduction band levels all lie above Ec while the valence band levels all lie
below Ev.

The Boltzmann approximation. In a typical semiconductor, at room temperature, the
valence band is very nearly full (i.e. almost all the states are occupied) while the conduction
band levels are almost all empty (i.e. almost all the states are unoccupied). This is a
consequence of the energy gap Eg = Ec−Ev being large with respect to kBT (i.e. Eg ≫ kBT )
and there being almost the right number of electrons to exactly fill the valence states. The
latter is equivalent to the following conditions on the Fermi level

Ec − Ef

kBT
≫ 1 and

Ef − Ev

kBT
≫ 1. (6)

It follows that the integrand in (5) is almost gv(E) and this suggests that, rather than
counting the number of electrons in the valence band, we should count the number of empty
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Figure 1: The allowed electron energy levels in a semiconductor (at zero electric potential).
Here Eea is the ionisation potential and Eg the gap energy.

states. These empty states are, by convention, called holes and their density p is given by

p =

∫ Ev

−∞

gv(E)dE −

∫ Ev

−∞

gv(E)

1 + exp((E − Ef)/kBT )
dE

=

∫ Ev

−∞

gv(E) exp((E − Ef)/kBT )

1 + exp((E −Ef )/kBT )
dE

=

∫ Ev

−∞

gv(E)

1 + exp((Ef −E)/kBT )
dE.

Since the exponential exp((Ef − E)/kBT ) is very large where the condition (6) is satisfied
we can accurately approximate the expression for p by

p ∼

∫ Ev

−∞

gv(E) exp(−(Ef − E)/kBT )dE.

On making the subsitition E = Ev − V we obtain the expression

p ∼ exp

(

−
Ef − Ev

kBT

)
∫

∞

0

gv(Ev − V) exp

(

−
V

kBT

)

dV. (7)

In a similar fashion we may approximate nc (the number density of electrons in the conduc-
tion band), since from (6) exp((E−Ef )/kBT ) is very large. On dropping the subscript from
nc we find

n ∼

∫

∞

Ec

gc(E) exp(−(E − Ef ))/kBT )dE,
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Then, on making the subsitition E = Ec + U , we obtain the expression

n ∼ exp

(

−
Ec − Ef

kBT

)
∫

∞

0

gc(Ec + U) exp

(

−
U

kBT

)

dU . (8)

It is more usual to express these approximations for p and n in the form

p = Nv(T ) exp

(

−
Ef − Ev

kBT

)

and n = Nc(T ) exp

(

−
Ec − Ef

kBT

)

(9)

where

Nc(T ) =

∫

∞

0

gc(Ec + U) exp

(

−
U

kBT

)

dU (10)

Nv(T ) =

∫

∞

0

gv(Ev − V) exp

(

−
V

kBT

)

dV, (11)

where Nc and Nv are termed the effective conduction band and valence band densities of
states, respectively. If, as is usual, the density of states in the vicinity of the conduction
band and valence band are approximately parabolic, i.e. gc(Ec + U) ∼ ΥcU2 for U > 0 and
gv(Ev −V) ∼ ΥvV2 for V > 0 for some constants Υc and Υv, we can evaluate these integrals
explicitly.

The intrinsic carrier density. A consequence of the Boltzmann approximation is that
product np is independent of the Fermi level, that is

np = Nc(T )Nv(T ) exp

(

−
Eg

kBT

)

where Eg = Ec −Ev,

and Eg is termed the energy gap. It is perhaps more usual to write this relation in terms of
the intrinsic carrier density ni defined by

np = n2
i where ni = (Nc(T )Nv(T ))

1/2 exp

(

−
Eg

2kBT

)

. (12)

The reason for doing this is that in an intrinsic (un-doped) semiconductor we have (at
equilibrium)

n = p = ni.

Doping. Impurities in the semiconducting crystal can lead to dramatic changes in its
electrical properties. Foreign atoms in its crystal lattice may preferentially donate electrons
to the conduction band (n-type doping) or grab them from the valence band (p-type doping)
leading to an imbalance between the number of holes and electrons. In the case of n-type
doping this leads to a stationary net positive charge (the impurity atom loses one of its
electrons) while in the case of p-type doping this leads to a stationary net negative charge
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(the impurity atom gains an electron). If these impurities occur in sufficient quantities they
may significantly increase the number of charge carriers above the intrinsic carrier density.
This is a consequence of the net charge in the material having to remain close to zero (charge
neutrality). Thus if Nd denotes the density of donor impurities (fixed positive charges) while
Na denotes the density of acceptor impurities (fixed negative charges) the condition of charge
neutrality implies

q(p− n+Nd −Na) = 0. (13)

Hence if there are very few acceptor impurities and a large number of donor impurities with
Nd ≫ ni we expect (from (12)-(13)) that

n ≈ Nd p ≈
n2
i

Nd

Such a material is termed n-doped because it has very many more conduction electrons than
holes. Alternatively if there are very few donor impurities and a large number of acceptor
impurities with Na ≫ ni we expect (from (12)-(13)) that

p ≈ Na n ≈
n2
i

Na

Such a material is termed p-doped because it has very many more holes than conduction
electrons.

Doping can be used to enhance the conductivity of a semiconductor because a doped
materical typically has many more charge carriers than an undoped (or intrinsic) material. It
can also be used as a mechanism to separate holes from electrons by p-doping a semiconductor
in one region and n-doping it in another. This sets up a potential difference between the
two regions that acts to drive holes into the p-doped region and electrons into the n-doped
region and can thus be used to separate solar generated charge carrier pairs in a photovoltaic
device.

3 Probabilistic and Drift-Diffusion models of charge

transport

We begin by considering models for a particle hopping on a lattice of energy wells and show
that in a certain limit the probability of finding the particle in a given well at a particuar
time can be approximated by a diffusion equation. We generalise to a particle hopping on
a lattice with an externally applied potential and show that its probability density satisfies
an drift diffusion equation. This analysis then applied to the motion of charge carriers in a
semiconductor. We finish by applying the drift diffusion model of charge carrier transport
in a semiconductor to a photovoltaic device formed from a p-n junction and show that its
current voltage curve is identical to that given by a simple equivalent circuit model of a solar
cell.
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Figure 2: The energy landscape of the particle for (a) a lattice with no applied potential and
(b) a lattice with applied potential U(x).

3.1 Rate equations for a particle hopping on a lattice

We start by considering a particle in one dimensional periodic energy landscape as depicted
in figure 2(a). This is characterised by energy wells separated by intervening energy peaks.
The particle sitting in one of these wells will, from time to time, have sufficient thermal
energy to traverse the energy maximum dividing this well from one of its neighbours. The
rate at which this “hopping” process occurs is given by the Arrhenius equation

Pi→i+1 = Probability particle moves from
well i to i+ 1 per unit time

= K exp

(

−
∆E

kBT

)

Pi→i−1 = Probability particle moves from
well i to i− 1 per unit time

= K exp

(

−
∆E

kBT

)

where kB is Boltzmann’s constant; T is absolute temperature; ∆E is the energy difference
between two neighbouring wells; and K a phenomenological rate constant.

The Dynamic Monte-Carlo method. We could at this stage simulate the motion
of the particle simply by getting a computer to throw dice in order to decide what it
does. The simplest way to do this is to pick a small time step ∆t with the property that

∆tK exp
(

− ∆E
kBT

)

≪ 1 (this means that in any given time step the chance of the particle

moving is small). Then to pick a random number R evenly distributed between 0 and 1 and
implement the procedure

If 0 ≤ R < ∆tK exp

(

−
∆E

kBT

)

then i(t+∆t) = i(t)− 1,

If ∆tK exp

(

−
∆E

kBT

)

≤ R < 2∆tK exp

(

−
∆E

kBT

)

then i(t+∆t) = i(t) + 1,

If 2∆tK exp

(

−
∆E

kBT

)

≤ R ≤ 1 then i(t+∆t) = i(t).
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This is an extremely easy procedure to implement but it is numerically inefficient because
for most of the time steps nothing happens and the particle remains where it is (to put it
another way it takes very little of your time to program but you may have to wait a long
time for the results if you are investigating a more complex problem than this).

The Gillespie Algorithm. It is, as remarked on above, computationally wasteful to take
very small timesteps in which nothing happens. An alternative, more efficient procedure, is
to calculate the randomly distributed time T between the last event and the next one and
then to calculate what the next event is based on the relative probabilities of the possible
events. Thus in the case of our previous example of a particle hopping on a one-dimensional
lattice the next event is either that the particle hops right (with probablity per unit time
Pi→i+1) or that it hops left (with probablity per unit time Pi→i−1). So the









Probability of an event
occuring in the
infinitessimal interval
T < t < T + δt









= Ptotδt where Ptot = Pi→i−1 + Pi→i+1. (14)

Given that the last event occurred at t = 0 the probability of the next event occurring in
the infinitessimal time interval T < t < T + δT is




Probability next event
occurs in
T < t < T + δt



 =





Probability no events
occurs in interval
0 < t < T



×





Probability an event
occurs in interval
T < t < T + δt



 , (15)

In order to evaluate this expression we need to calculate the probability that no events occur
in 0 < t < T (we have already calculated the probability that an even occurs in T < t < T+δt
in (14)). In order to do this we subdivide the interval 0 < t < T into a large number, N ,
of very small intervals of size ∆t such that N∆t = T . An approximate expression for this
quantity is then given by





Prob. no events
in interval
0 < t < T



 ≈





Prob. no events
in interval
0 < t < ∆t



×





Prob. no events
in interval
∆t < t < 2∆t



× · · ·

· · · ×





Prob. no events
in interval
0 < t < N∆t





= (1− Ptot∆t)× (1−Ptot∆t)× · · · × (1− Ptot∆t),

= (1− Ptot∆t)N .
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Taking the (natural) logarithm of this expression we find that

loge





Prob. no events
in interval
0 < t < N∆t



 ≈ N loge(1−Ptot∆t)

≈ −NPtot∆t since Ptot∆t ≪ 1

= −PtotT.

It follows that




Prob. no events
in interval
0 < t < N∆t



 = exp(−PtotT ).

Substituting this result, together with (14), back into (15) we obtain the desired result





Probability next event
occurs in
T < t < T + δt



 = Ptotδt exp(−PtotT ). (16)

How then should we use the result (16) to randomly select the time T at which the
next even occurs? Recall that it is easy to get a computer to pick a (uniformly distributed)
random number R with value between 0 and 1. Furthermore the probability that the next
event occurs in the interval 0 < t < T is a random variable that is distributed between 0
and 1 (i.e. it is 0 when T = 0 and 1 when T = ∞). Indeed by integrating the expression
(16) we find that





Probability next event
occurs in range
0 < t < T



 =

∫ T

0

Ptot exp(−Ptott)dt (17)

= [− exp(−Ptott)]
T
0 (18)

= 1− exp(−PtotT ). (19)

In order to calculate the time T to the next event we therefore identify 1−exp(−PtotT ) with
the uniformly distributed variable R, with range 0 < R < 1, by writing

1− exp(−PtotT ) = R

from which we calculate T as

T = −
1

Ptot
loge(1− R). (20)
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Once we have calculated the time T to the next event (using the uniformly distributed
variable R with range 0 < R < 1) we need to work out which of the two possible events (the
particle moves left or the particle moves right) occurs at this time. This is easy to do since
the relative probabilities of these two events are





Relative probability
particle moves right
i → i+ 1



 =
Pi→i+1

Ptot
,





Relative probability
particle moves left
i → i− 1



 =
Pi→i−1

Ptot
.

and the relative probabilites clearly add to 1. We therefore calculate which of the two
possibilities occurs (in the next event) by getting the computer to pick a second (uniformly
distributed) random number r, with value between 0 and 1, and

moving the particle moves to the right (i.e. i → i+ 1) if 0 < r <
Pi→i+1

Ptot
,

moving the particle moves to the left (i.e. i → i− 1) if
Pi→i+1

Ptot
< r < 1.

(21)

The Algorithm. To recap the Gillespie Algorithm for a particle hopping on a one-
dimensional lattice consists of the steps

1. Use the computer to pick a (uniformly distributed) random number R with value
between 0 and 1.

2. Calculate the time T to the next event from the value of this random number with the
formula

T = −
1

Ptot
loge(1− R).

3. Use the computer to pick a second (uniformly distributed) random number r with
value between 0 and 1.

4. Determine which of the two events occur from the value of r based on the criterion

particle moves to the right (i.e. i → i+ 1) if 0 < r <
Pi→i+1

Ptot

,

particle moves to the left (i.e. i → i− 1) if
Pi→i+1

Ptot
< r < 1.

(22)

5. Repeat.

Generalisation to more complicated systems. With a bit of common sense this algo-
rtihm can be generalised to more complicated random systems where there are more than
two possible events. For example the motion of a particle on a square lattice; here there are
4 possible events (i) particle moves left, (ii) particle moves right, (iii) particle moves up, (iv)
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particle moves down. Or for example N particles moving on a square lattice; here there are
4N possible events corresponding to each particle moving in 1 of 4 directions. Or if we are
interested in carrying out a Monte-Carlo simulation of a solar cell we need to account for
the motion of a large number of holes and electrons on a lattice together with generation
events (creation of a hole and electron) and recombination events (destruction of a hole and
electron).

3.2 A probabilistic approach to particle hopping.

Rather than trying to directly simulate the motion of the particle it is often sufficient to
track the probability of the particle being at any particular lattice point as a function of
time. With this in mind we define

Pi(t) =
Probability particle is
in well i at time t

and attempt to write down a series of coupled ordinary differential equations (ODEs) in time
for the probabilities Pi(t) by considering the evolution of the system over an infinitesimal
time interval δt. Suppose that we know what the probability of finding the particle is at
any of the lattice points at time t (that is we know all the Pi(t) for all values i) then the
probability that the particle is in the i’th well at time t + δt is given approximately by

Pi(t+ δt) ≈ Pi(t)×

(

Probability particle remains
in well i over interval δt

)

+Pi+1(t)×

(

Probability particle jumps from
well i+ 1 to well i in interval δt

)

+Pi−1(t)×

(

Probability particle jumps from
well i− 1 to well i in interval δt

)

. (23)

It follows that

Pi(t+ δt) ≈ Pi(t)

(

1− 2δtK exp

(

−
∆E

kBT

))

+Pi+1(t)δtK exp

(

−
∆E

kBT

)

+ Pi−1(t)δtK exp

(

−
∆E

kBT

)

=⇒
Pi(t+ δt)− Pi(t)

δt
= K exp

(

−
∆E

kBT

)

(Pi+1(t)− 2Pi(t) + Pi−1(t)) .

Taking the limit δt → 0

dPi

dt
= K exp

(

−
∆E

kBT

)

(Pi+1(t)− 2Pi(t) + Pi−1(t)) . (24)
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3.3 Derivation of a diffusion equation for particle hopping.

In practise we might be thinking of applying this approach to a problem in which there are
a very large number of lattice sites: for example to an electron hopping along a line of atoms
in a crystal. In such scenarios it is not sensible to track of the probability on all lattice
sites. Furthermore, since the probability at neighbouring lattice sites is likely to be very
similar, we can seek to replace the probabilities Pi(t) on the lattice sites by a continuum
representation of the probability p(x, t), where we suppose x to be a spatial representation
of the site’s position. Thus if the lattice sites are evenly spaced a distance δx apart we can
write x = iδx. It is tempting to identify p(x, t) directly with Pi(t) by writing p(iδx, t) = Pi(t)
but rather than do this we instead choose to define p(x, t) as a probability density by writing

p(iδx, t) =
Pi(t)

δx

[Aside: You might be worried about the dimensions here because probability densities usually
have dimensions of L−3 and p(x, t) seems to have dimensions of L−1. However we note that
if we were considering a three-dimensional problem we would have defined p(x, y, z, t) by

p(iδx, jδx, kδx, t) =
Pijk(t)

δx3
(25)

which has the right dimensions and so if we are thinking of this as being a one-dimensional
representation of a 3-d problem the units of Pi(t) really should be L−2 for the obvious
reasons.]

Having defined p(x, t) by (25) and substituted this into (24) we retrieve

∂p

∂t
(x, t) =

[

Kδx2 exp

(

−
∆E

kBT

)]

p(x+ δx, t)− 2p(x, t) + p(x− δx, t)

δx2

If we now Taylor expand p(x+δx, t) and p(x−δx, t) about x (assuming that δx is sufficiently
small to allow us to do so) we find that, to a leading order approximation, that p(x, t) satisfies
a diffusion equation

∂p

∂t
= D

∂2p

∂x2
, (26)

where

D =

[

Kδx2 exp

(

−
∆E

kBT

)]

. (27)
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Interpretation in terms of particle number density (concentration). Thus far we
have assumed only a single particle hopping on a lattice but in reality we are much more
often concerned with a large number of particles on a lattice (e.g. free electrons in an organic
semiconductor or excitons). This does not present a problem provided that the particles do
not interact with each other via, for example, Coulomb forces or exclusion effects. We will
leave the treatment of interaction via Coulomb forces until §3.4 and note here that exclusion
effects only become significant when the number of particles is comparable to the number of
lattice sites so that there is competition between particles for available lattice sites. Hence,
provided the particles do not interact via a force and their number is much smaller than
that of the lattice sites, we can treat them as effectively independent. This means each of
the N particles has a probability density p(n)(x, t) (for n = 1, 2, · · · , N) which is, to a good
approximation, independent of that for all the other particles. It follows that the particle
number density c(x, t) defined by

c(x, t) =

N
∑

n=1

p(n)(x, t),

obeys the same equation that the probability distribution for each particle obeys (i.e. (26)).
Thus

∂c

∂t
= D

∂2c

∂x2
, (28)

3.4 Description of a particle hopping on a lattice in an applied
potential

Semiconductors contain relatively large numbers of mobile charged particles (free electrons
and holes) which, since they are charged, interact with each other via the Coulomb potential.
In order to treat this type of scenario we consider a single particle moving in a potential
comprised of a quasi-periodic part (as previously) and a smooth part U(x) (the applied
potential); this is illustrated in figure 2(b). In order to make the analysis more general we
allow the energy barrier between the wells (in the absence of the applied potential) ∆E to
vary smoothly with x; the implicit assumption being that ∆E varies by a small amount
between neighbouring peaks but can vary significantly over many peaks. We denote the
energy barrier on passing from well i to well i+1 by ∆Ei→i+1 and that on passing from well
i to well i − 1 by ∆Ei→i−1. In the presence of the applied potential U(x) the appropriate
expressions for these quantities are

∆Ei→i+1 = U

(

x+
δx

2

)

− U(x) + ∆E

(

x+
δx

2

)

, (29)

∆Ei→i−1 = U

(

x−
δx

2

)

− U(x) + ∆E

(

x−
δx

2

)

, (30)

12



where, as before x = iδx. In a similar fashion

∆Ei+1→i = U

(

x+
δx

2

)

− U(x+ δx) + ∆E

(

x+
δx

2

)

, (31)

∆Ei−1→i = U

(

x−
δx

2

)

− U(x− δx) + ∆E

(

x−
δx

2

)

. (32)

Once again we consider a small time interval δt and formulate a set of coupled difference equa-
tions for Pi(t+ δt) (the probability of the particle being in well i at time t+ δt) as described
in equation (23). The rate at which the particle jumps from one well to a neighbouring well
are (as before) determined by the energy barrier that it has to surmount, through Arrhenius’
Law. We can thus translate (23) into the following difference equation

Pi(t+ δt) ≈ Pi(t)

(

1− δtK

(

exp

(

−
∆Ei→i+1

kBT

)

+ exp

(

−
∆Ei→i−1

kBT

)))

+Pi+1(t)δtK exp

(

−
∆Ei+1→i

kBT

)

+ Pi−1(t)δtK exp

(

−
∆Ei−1→i

kBT

)

.

On rearranging this equation and taking the limit as δt → 0 we obtain a set of coupled
ODEs (exactly as before), namely

dPi

dt
= K

[

Pi+1(t) exp

(

−
∆Ei+1→i

kBT

)

+ Pi−1(t) exp

(

−
∆Ei−1→i

kBT

)

−Pi(t)

(

exp

(

−
∆Ei→i+1

kBT

)

+ exp

(

−
∆Ei→i−1

kBT

))]

. (33)

In order to obtain a partial differential equation for the probability density p(x, t) (as defined
in (25)) we proceed as before and expand in powers of δx (having first substituted for the
energy barriers from (29)-(32)). As this is a rather lengthy procedure we won’t give the
details here but we note that that the calculation is of a similar nature to that used to derive
(26) and that the resulting PDE is

∂p

∂t
=

∂

∂x

(

D(x)

(

∂p

∂x
+

p

kBT

∂U

∂x

))

, (34)

where

D(x) =

[

Kδx2 exp

(

−
∆E(x)

kBT

)]

.

Using arguments analogous to those presented at the end of §3.3 we can show that the same
equation is satisfied by the particle number density c(x, t), i.e.

∂c

∂t
=

∂

∂x

(

D(x)

(

∂c

∂x
+

c

kBT

∂U

∂x

))

, (35)

in a system in which the number of particles is much smaller than the number of lattice sites.
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Generalisation to higher dimensions. It is straightforward (but slightly messy) to show
that the one dimensional drift diffusion equation generalises to three-dimensions to give, as
might be expected,

∂c

∂t
= ∇ ·

(

D(x)

(

∇c+
c

kBT
∇U

))

, (36)

3.5 Other processes giving rise to advection-diffusion models

The above description of particle motion in a periodic energy landscape could easily be
adapted to free electrons in the LUMO (lowest unoccupied molecular orbital) of an organic
semiconductor (or equally to a hole in the HOMO of an organic semiconductor). However it
does not apply to conduction electrons in an inorganic semiconductor which occupy a gen-
uine conduction band and are therefore free to move largely unhindered through the crystal
lattice. Nevertheless the same drift-diffusion equation, derived above in (34), applies to the
motion of electrons in a conduction band and holes in a valence band except that here the
diffusive character of the motion can be attributed to electron scattering in the crystal lat-
tice. The derivation of the drift-diffusion equations in an inorganic semiconductor is outlined
in Nelson (chapter 3) [7].1 This derivation is considerably more involved than the one given
above for hopping processes. It starts (I) from a quantum mechanical description of the
wavefunction of an electron in the conduction band of a semiconducting lattice (using Bloch
wave functions), (II) assumes that electrons are in quasi thermal equilibrium at all points
in space (i.e. scattering of electrons within the crystal is sufficiently fast that the electrons
are distributed [across energy levels of the conduction band] according to a Boltzmann dis-
tribution) and (III), having made this assumption, uses the Boltzmann Transport equation
to calculate the electron current in terms of the electric field and the spatial distribution of
electrons.

4 Drift diffuion models of charge transport in semicon-

ductors

Charge transport in a semiconductor is characterised by the motion of free electrons (in the
conduction band [inorganic] or LUMO [organic]) and holes (in the valence band [inorganic]
or HOMO [organic]). Both electrons and holes are charged and therefore interact via the
Coulomb force. In order to keep track of these interactions it is usual to define an ‘averaged’
electric potential φ which satisfies Poisson’s equation

∇ · (ε∇φ) = −ρ(x, t) (37)

where ε is the permittivity. The charge density ρ is typically approximated in terms of
p, n and Cfix which are the hole, free electron and the fixed charge densities (or in other

1See also Feynman Volume III [1] Chapters 13-14.
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words Cfix = Nd − Na is the net doping density), respectively. The relation given by this
approximation is

ρ(x, t) = q(p(x, t)− n(x, t) + Cfix) (38)

where q is the charge on a proton. In making this approximation we have smeared out the
effects of the individual point charges by replacing the delta-functions in the charge density
with a smooth function q(p(x, t)−n(x, t)+Cfix). Where opposite charges do not tend to pair
up this is a sensible approach to adopt. Indeed it works well for semiconductors however,
there are systems, such as electrolytes, where this approximation is not particularly good
and alternative approaches have to be adopted.

Assuming that there is very little charge recombination or generation the resulting equa-
tions for n, p and φ can be found by combining (37) with (38), writing c = p and U = qφ in
(36) and writing c = n and U = −qφ in (36) to obtain the set of coupled PDEs

∂p

∂t
= ∇ ·

(

Dp

(

∇p+
q

kBT
p∇φ

))

, (39)

∂n

∂t
= ∇ ·

(

Dn

(

∇n−
q

kBT
n∇φ

))

, (40)

∇ · (ε∇φ) = q(n− p− Cfix). (41)

Here Dp and Dn are the diffusivity of holes and mobile electrons, respectively.

Remarks. It is notable that there are 3 PDEs for the 3 variables p, n and φ and we therefore
seem to have the right number of equations for unknowns. There are however a number of
things missing from the physics. Firstly we have entirely neglected charge generation and
recombination which are key ingredients if we want to model a solar cell. Secondly we have
implicitly assumed that we are considering only a single materialn when in fact we may want
to investigate devices with junctions between a number of semiconducting materials.

4.1 Currents, fluxes and carrier concentration

In order to aid the physical interpretation of their solutions it is helpful to recast the drift-
diffusion equations for free electrons and holes in terms of alternative variables (e.g. quasi-
Fermi levels). We begin re-expressing (36) (or alternatively (39)-(40)) in terms of conserva-
tion laws for the carrier concentrations. On writing c = p in (36) and subsequently writing
c = n in (36) and re-arranging the resulting equations we find

∂p

∂t
+∇ · (pvp) = 0 where vp = −

Dp

kBT
∇

(

kBT ln

(

p

c∗p

)

+ Up

)

, (42)

∂n

∂t
+∇ · (nvn) = 0 where vn = −

Dn

kBT
∇

(

kBT ln

(

n

c∗n

)

+ Un

)

. (43)
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Here it is not immediately clear what the reference concentrations c∗p and c∗n should be, and
it does not matter provided we only consider a single homogenous material in which these
concentrations are constant so that their gradients are zero. In fact it turns out (for sound
statistical mechanical reasons) that we should identify c∗p and c∗n with the effective densities
of states in the valence and conduction bands, respectively (see (11)) so that

c∗p = Nv and c∗n = Nc

We may identify (42a) and (43a) as conservation equations for p and n respectively in which
vp and vn represent the average velocities of holes and electrons respectively. Equations (42b)
and (43b) for the average velocities can then be re-expressed in terms of thermodynamic
quantities as

vp = −
Dp

kBT
∇µp where µp = kBT ln

(

p

Nv

)

+ Up, (44)

vn = −
Dn

kBT
∇µn where µn = kBT ln

(

n

Nc

)

+ Un. (45)

Here µp and µn are the electrochemical potentials of holes and free electrons, respectively.
The hole current density jp (i.e. that portion of the current carried by holes) and the

electron current density jn are related to the average carrrier velocities by jp = qpvp and
jn = −qpvn from which it follows that

jp = −
qDp

kBT
p∇µp and jn =

qDn

kBT
n∇µn.

In the solid state physics literature these quantities are more usually expressed in terms of
carrier mobilities and quasi Fermi levels in the form

jp = Mpp∇EFp
and jn = Mnn∇EFn

. (46)

Here the electron and hole mobilities (Mn and Mp, respectively) and the electron and hole
quasi Fermi levels (EFn

and EFp
, respectively) are defined by

Mn =
qDn

kBT
, Mp =

qDp

kBT
, EFn

= µn, EFp
= −µp. (47)

Electron and hole potentials and quasi-Fermi levels. We now need to specify the
electron and hole potentials (Un and Up respectively) more precisely. We begin by considering
the mobile electrons. These electrons lie close to the lower edge of the conduction band and
so in the absence of an electric field (i.e. zero electric potential) their energy is −Eea, where
Eea is the electron affinity; i.e. the energy required to remove an electron from the conduction
band edge to the vacuum level (see figure 1). The electrostatic part of the potential is −qφ.
Adding these two contributions together gives

Un(x) = −Eea(x)− qφ(x). (48)
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The holes lie close to the upper edge of the valence band and in order to calculate their
potential we calculate the potential of an electron lying there and note that the potential of
a hole (i.e. a lack of an electron) is just minus that of the electron it replaces. It follows that

Up(x) = (Eea(x) + Eg(x)) + qφ(x), (49)

where Eg is the energy gap between the valence and conduction band2 (see figure 1). It is
also common to see the electron and hole potentials written in terms of the electron energies
(including the effect of the electric potential) at the band edges

Un(x) = Ec(x) and Up(x) = −Ev(x). (50)

Here Ec and Ev are the energies at the conduction and valence band edges, respectively. It
now becomes apparent why EFn

and EFp
are termed quasi-Fermi levels because if we take

our definitions of the quasi-Fermi levels (47c-d) and substitute for the chemical potentials µp

and µn from (44b) and (45b) and rewrite the resulting expression in terms of p and n (using
(50)) we obtain

p = Nv exp

(

−
EFp

− Ev

kBT

)

and n = Nc exp

(

−
Ec − EFn

kBT

)

. (51)

These look almost identical to (9) the formulae for the electron and hole denisities at equilib-
rium except that the Fermi level in the equation of for n has been replaced by the quasi-Fermi
level EFn

and the Fermi level in the equation of for p has been replaced by the quasi-Fermi
level EFp

. However the formulae (51) dont really help us a lot because we cannot use them
to determine the carrier concentrations n and p and it is much better to think of the quasi-
Fermi levels as being determined by the carrier concentrations rather than the other way
round. With this in mind we use the definitions of the quasi-Fermi levels in (47c-d), (45b)
and (44b) together with those of the electron and hole potentials to write

EFn
= kBT ln

(

n

Nc

)

−Eea − qφ, EFp
= −kBT ln

(

p

Nv

)

−Eea − Eg − qφ. (52)

4.2 Carrier generation and recombination

Thinking back to our treatment of a semiconductor at equilibrium it becomes apparent that
we have forgotten something. Our equations for the conservation of electrons (42)-(43) allow
only for transport of electrons within a band but no interchange of electrons between the two
bands (conduction and valence). Yet when we discussed the equilibrium problem we assumed
that there was thermal equilibrium between the electrons in the two bands and so we clearly
need to allow jumping of electrons between bands, even if this might be a relatively small
effect with respect to other processes. If we don’t do this we cannot expect the solution of our

2Here −(Eg + Eea) is the energy of an electron at the upper edge of the valence band at zero electric
potential.
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model to eventually settle down to an equilibrium. How should we model this? Equations
(42)-(43) are conservation equations for holes and free electrons respectively. Now moving
an electron from the valence band to the conduction band results in the creation of a hole
(in the valence band) and a free electron (in the conduction band). Similarly a free electron
can only jump down from the conduction band into the valence band if there is hole for it
to fill and so this process therefore results in the annihilation of a free electron and a hole.
In other words motion of electrons between bands results in the creation (or annihilation)
of equal number of holes and free electrons. It follows that the only sensible way to alter
(42)-(43) is by adding the same term to the right-hand side of both these equations so that

∂p

∂t
+∇ · (pvp) = Gtherm,

∂n

∂t
+∇ · (nvn) = Gtherm. (53)

Here it is to be understood that Gtherm is the volumetric rate of generation of holes and free
electrons and can be either positive (if there is positive net rate of electrons jumping from
conduction to valence band) or negative (if there is positive net rate of electrons jumping
from valence to conduction band). Furthermore we require that, if the semiconductor is
isolated and there are no spatial gradients (so that vp = vn = 0), the solution to (53) settles
to the thermodynamic equilibrium given in (12) for long times (i.e. np → n2

i as t → +∞). If
we think first about the recombination of free electrons (in the conduction band) with holes
(in the valence band) we might reasonably expect that, since both species are rare, the rate
limiting step is getting the free electron close enough to the hole so that they can annihilate.
The rate at which these two species come within a critical reaction radius per unit volume is
clearly proportional to the product of their concentrations np. Putting these facts together
we end up with a simple (and correct) model for the thermal generation rate

Gtherm = γ(n2
i − np). (54)

for some material dependent rate constant γ.

Solar generation. Central to the use of semiconductors in solar cell is their ability to
absorb light and turn the absorbed energy into charge free-electron hole pairs. Clearly
such pairs can only be generated directly if the absorbed photon has more energy than the
band gap, which is one of the reasons that the choice of material with the right band gap
is so important. If the band gap is large not many photons are turned into free-electron
hole pairs but the free-electron hole pairs that are generated have a large potential energy
(corresponding to a high open circuit voltage Voc and a small short-circuit current Jsc). If on
the other hand the band gap is small most photons will generate free-electron hole pairs but
these will have low potential energy (corresponding to a high Jsc and low Voc). In inorganic
semiconductors (where the band gap is usually large) the generation of charge pairs typically
occurs directly throughout the bulk of the semiconductor. In organic materials, however,
charge pair generation typically occurs in a two stage process. Photons are absorbed in
the bulk of the semiconductor to produced an exciton (an excited electron) which can be
thought of as a coulombically bound electron hole pair. This exciton can diffuse around but
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has a relatively short lifetime before it releases its energy as heat. Such excitonic materials
can only be used in photovoltaics if they form an interface with another material at which
it is favourable for excitons to dissociate into a free-electron in one material and a hole
in the other. As this is rather complicated we will stick to the direct form of generation
(which incidentally also seems to be that relevant for perovskites). At its crudest level we
ought be able to treat such carrier generation in a similar fashion to thermal generation by
adding a term Gsol(x) to the right-hand side of (53). Of course the exact details of the
size of Gsol and its spatial variation are extremely important and as hinted to above depend
on band gap, the radiation spectrum and how much radiation has been absorbed in other
parts of the cell before reaching the point x. However these are not the focus of this course
and so we will not go into these here, and typically will assume Gsol is a constant (which
can only really be justified in a very thin cell which absorbs only a small fraction of the
incident light). It is worth noting that the rate of solar generation (per sufficiently energetic
phtoton) is intimately linked to the rate of bimolecular recombination γ. This is because
solar generation and bimolecular recombination are essentially the same processes but in
reverse. For more information on how these rates should be calculated see Chapter 4 [7].3

Recombination via trapped states. Thus far we have assumed that charge pairs only
recombine via bimolecular recombination, in which an electron from the conduction band
drops direcly into a hole in the valence band; this is represented by the second (negative) term
on the right-hand side of (54) (i.e. −γnp). Bimolecular recombination is, as noted above,
the reverse process to solar generation since the potential energy lost by the conduction band
electron is emitted as a photon. Indeed bimolecular recombination is responsible for light
emission in an LED (light emitting diode), which is a device that turns electrical energy
into light energy. However other recombination mechanisms are possible and indeed turn
out to be more significant that bimolecular recombination in photovoltaic devices. These
alternative forms of recombination usually occur when an electron from the conduction band
becomes trapped in an energy state lying in the forbidden energy. Such states are termed
trap states and are associated with imperfections in the semiconductor. The most common
model for recombination via trapped states is the Shockley-Reid-Hall (SRH) model that
states that the rate of recombination Rtrap has the form

Rtrap =
np− n2

i

τ1n+ τ2p+ τ3ni
, (55)

where τ1, τ2 and τ3 are timescales associated with the trapping process. Other more exotic
recombination processes are discussed in [6, 9].

4.3 The full equations

We are now in a position to write down the full equations for a semiconductor, which may
be doped, and which absorbs light to generate charge carrier pairs. These are given by (46)

3Assuming that the recombination and generation rates are independent can lead to nonsensical predic-
tions such as devices that produce more power than they absorb through solar radiation.
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and the generalisation of (53) to include solar generation Gsol and recombination via trapped
states Rtrap

∂p

∂t
+

1

q
∇ · jp = γ(n2

i − np) +Gsol(x)−Rtrap where jp = Mpp∇EFp
, (56)

∂n

∂t
−

1

q
∇ · jn = γ(n2

i − np) +Gsol(x)− Rtrap where jn = Mnn∇EFn
, (57)

∇ · (ε∇φ) = q(n− p− Cfix), (58)

where the quasi-Fermi levels are (as in (52)) defined by

EFp
= −kBT ln

(

p

Nv

)

− (Eea + Eg)− qφ, (59)

EFn
= kBT ln

(

n

Nc

)

−Eea − qφ. (60)

4.3.1 Boundary conditions.

Boundary conditions on these equations need to be specified where the semiconductor forms
a junction with a current collectors. The latter are usually metallic or have metallic proper-
ties. In most devices it is usual to assume that the metallic contact and the semiconductor
are in thermal equilibrium. Even this assumption still yields rather complicated boundary
conditions which typically result in a solution with a thin layer in which the potential changes
rapidly. However in practice the contacts are usually chosen so that they do not unduly in-
fluence the behaviour of the device and where this is the case a sensible set of boundary
conditions, at the interface between a doped semiconductor and a metallic contact, consists
of imposing continuity of the potential at the contacts, requiring that the minority carrier
current flux across the boundary is zero and ensuring that the carrier charge density is equal
to the doping charge density: that is

Jmin · n|∂Ω = 0, φ|∂Ω = V, n− p|∂Ω = Cfix. (61)

Here V is the potential of the contact, n is the unit normal to the boundary and Jmin is the
current flux of the minority carrier.

4.4 A simple one-dimensional inorganic solar cell: the n-p homo-
junction

Here we will consider a solar cell formed from a planar inorganic semiconductor sandwiched
between two contacts (see figure 3) at x = −L and x = L and look to calculate its current
voltage curve. In order to separate solar generated charges the semiconductor is n-doped
in −L < x < 0 and p-doped in 0 < x < L. At equilibrium, as illustrated in figure 4, this
results in band bending and a potential difference between the two sides of the cell that acts
to drive the electrons and holes created by solar generation apart. In order to simplify the
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Figure 3: The n-p junction.

problem consider a cell with a high degree of symmetry. In particuar assume that the doping
in the two halves of the cell is equal and opposite (such that Cfix = Ndop in −L < x < 0 and
Cfix = −Ndop in 0 < x < L) and that the mobilities of holes and electrons are equal. We
shall also assume (rather unrealistically) that recombination is entirely bimolecular (so that
Rtrap ≡ 0). With these assumptions the governing equations (56)-(60) may be written as

∂jp
∂x

= q
(

γ(n2
i − np) +Gsol

)

, jp = −qD

(

∂p

∂x
+

p

VT

∂φ

∂x

)

, (62)

∂jn
∂x

= −q
(

γ(n2
i − np) +Gsol

)

, jn = qD

(

∂n

∂x
−

n

VT

∂φ

∂x

)

, (63)

∂2φ

∂x2
=











q

ε
(n− p−Ndop) in −L < x < 0

q

ε
(n− p+Ndop) in 0 < x < L

. (64)

Here we have chosen to rewrite mobility M in terms of the diffusion coefficient via D =
kBTM/q and have defined VT = kBT/q. The quantity VT , termed the thermal voltage, plays
an important role in semiconductor physics and at room tempertature VT ≈ 25mV.

Boundary Conditions at the contacts. Here we use the boundary conditions of the
form (61) at both contacts. On the left contact (x = −L) the minority carriers are holes while
on the right contact they are electrons. We choose to split voltage difference V between the
two contacts into two parts, the built in voltage Vbi and the applied voltage Vap, by writing
V = Vbi − Vap; the boundary conditions then become

jn|x=−L = 0, φ|x=−L =
Vbi − Vap

2
, n− p|x=−L = Ndop, (65)

jp|x=L = 0, φ|x=L =
Vap − Vbi

2
, p− n|x=−L = Ndop, (66)
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Figure 4: (a) Energy levels in the isolated n-type and p-type materials. (b) Band bending
and the built voltage Vbi when two materials form an n-p junction.

4.4.1 Rescaling.

We now have the option of trying to solve this model computationally for physically realistic
parameters. However this does not really allow us to develop much physical intuition about
the problem and it turns out that a much better way of proceding is to try and solve the
model asymptotically (i.e. approximately) making use of the fact that certain dimensionless
parameters (these are sometimes termed dimensionless groups) are either very small or very
large in all practical devices. As an example of this let us consider the ratio of the ratio
of the Debye length LD (i.e. the characteristic lengthscale defined by equation (64)) to the
half-width of the cell. Here on assuming that the characteristic volatge of the problem is VT

and the characteristic carrier density is Ndop we find that

LD =

(

εVT

qNdop

)1/2

.

Given ε ∼ 4ε0 andNdop ∼ 1022−1025m−3 gives LD in the range 10−9−10−8m. Comparing this
to a typical half width of a cell, which might be 10−6−10−5m, implies that the dimensionless
parameter λ defined by

λ =
LD

L
=

1

L

(

εVT

qNdop

)1/2

(67)

is very small λ = O(10−4)−O(10−2), a fact that we shall make use of.
In order to identify all the dimensionless parameters in the problem we rescale it in such

a way as to leave a dimensionless problem charactersied by a minimal set of dimensionless
parameters. This process is called non-dimensionalisation and, providing that we choose to
scale our variables with sensible values, leads to considerable insight into the physics of the
problem.
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Nondimensionalisation. We resacle the variables in the problem as follows:

φ = VT φ̄, n = Ndopn̄, p = Ndopp̄, Gsol = G1−sunḠ, jn = qLG1−sunj̄n,
x = Lx̄, Vbi = VT V̄bi, Vap = VT V̄ap jp = qLG1−sunj̄p.

where given the application we choose to scale the charge pair generation term with the
generation that would be expected under illumination of one sun G1−sun. On substituting
these rescalings into (62)-(66) we obtain the following system on dimensionless equations
and boundary conditions:

∂j̄p
∂x̄

= Θ(N2
i − n̄p̄) + Ḡ, j̄p = −κ

(

∂p̄

∂x̄
+ p̄

∂φ̄

∂x̄

)

, (68)

∂j̄n
∂x̄

= −Θ(N2
i − n̄p̄)− Ḡ, j̄p = κ

(

∂n̄

∂x̄
− n̄

∂φ̄

∂x̄

)

, (69)

∂2φ̄

∂x̄2
=















1

λ2
(n̄− p̄− 1) in −1 < x̄ < 0

1

λ2
(n̄− p̄+ 1) in 0 < x̄ < 1

, (70)

j̄p|x̄=−1 = 0, φ̄|x̄=−1 =
V̄bi − V̄ap

2
, n̄− p̄|x̄=−1 = 1, (71)

j̄n|x̄=1 = 0, φ̄|x̄=1 =
V̄ap − V̄bi

2
, p̄− n̄|x̄=1 = 1, (72)

where the dimensionless parameters (or groups) in the problem are

Ni =
ni

Ndop

, λ =
1

L

(

εVT

qNdop

)1/2

, Θ =

(

γN2
dop

G1−sun

)

, κ =

(

DNdop

G1−sunL2

)

. (73)

Dimensionless parameters and their size. We have already seen that λ = LD/L gives
the ratio of the Debye length to the half-width of the cell. The next parameter we consider
is Ni which gives the ratio of the intrinsic carrier density to that of the doping density; the
intrinsic carrier density in silicon (at room temperature) is roughly 1016m−3 and so taking
Ndop ∼ 1020 − 1022m−3 (as above) leads to an estimate of Ni = O(10−4)−O(10−8). Θ gives
the ratio of the square of the typical charge densities obtained by balancing solar generation
with bimolecular recombination to the square of the doping density. κ gives the ratio of the
typical current density produced by a potential difference across the cell of size O(VT ) to
the current density produced by charge generation at one sun. Thus if κ ≫ 1 this suggests
the current produced by illumination of the solar cell at one sun can be transported away
by a very small potential diffference across the cell, or to put it another way that the ohmic
resistance is negligible. It is nearly always the case that κ ≫ 1, indeed if it were not the cell
would be very inefficient.

23



Simplifying the problem using its symmetry. The problem is symmetric about x̄ = 0
as can be seen by making the substitution

x̄ = −X̄, p̄ = N̄ , n̄ = P̄ , φ̄ = −Φ̄, j̄n = J̄p, j̄p = J̄n,

in (68)-(72). If you do this you will see that you retrieve exactly the same problem but with
the variables replaced as follows:

x̄ → X̄, n̄ → N̄, p̄ → P̄ , φ̄ → Φ̄, j̄n → J̄n, j̄p → J̄p,

(check this). It is thus apparent that the solution to (68)-(72) has the symmetry

p̄(−x̄) = n̄(x̄), n̄(−x̄) = p̄(x̄), φ̄(−x̄) = −φ̄(x̄), (74)

j̄p(−x̄) = j̄n(x̄), j̄n(−x̄) = j̄p(x̄). (75)

We need therefore only solve in 0 < x̄ < 1 where we impose the boundary conditions

p̄|x̄=0 = n̄|x̄=0, φ̄|x̄=0 = 0, j̄p|x̄=0 = j̄n|x̄=0.

The problem we need to solve in 0 < x̄ < 1 can thus be stated as

∂j̄p
∂x̄

= Θ(N2
i − n̄p̄) + Ḡ, j̄p = −κ

(

∂p̄

∂x̄
+ p̄

∂φ̄

∂x̄

)

, (76)

∂j̄n
∂x̄

= −Θ(N2
i − n̄p̄)− Ḡ, j̄p = κ

(

∂n̄

∂x̄
− n̄

∂φ̄

∂x̄

)

, (77)

∂2φ̄

∂x̄2
=

1

λ2
(n̄− p̄+ 1), (78)

p̄|x̄=0 = n̄|x̄=0, φ̄|x̄=0 = 0, j̄p|x̄=0 = j̄n|x̄=0, , (79)

p̄− n̄|x̄=1 = 1, φ̄|x̄=1 =
V̄ap − V̄bi

2
, j̄n|x̄=1 = 0, (80)

and we can determine the solution in −1 < x̄ < 0 from the symmetry conditions (75).

4.4.2 Asymptotic solution to the dimensionless model in the limit λ ≪ 1 and
κ ≫ 1

We now seek to solve the problem approximately by making use of the fact that κ ≫ 1 and
λ ≪ 1. We start by noting that since κ ≫ 1 the right-hand sides of (76) and (77) must both
be very small, i.e. the following approximate equations must hold

∂p̄

∂x̄
∼ −p̄

∂φ̄

∂x̄
,

∂n̄

∂x̄
∼ n̄

∂φ̄

∂x̄
.

It is not hard to show that these have solution

p̄ = A exp(−φ̄) and n̄ = B exp(φ̄), (81)
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for some arbitrary constants A and B. Apllying the conditions (79a-b) on x̄ = 0 implies that

B = A

while application of the conditions (80a-b) on x̄ = 1 implies that

A =
1

exp
(

V̄bi−V̄ap

2

)

− exp
(

− V̄bi−V̄ap

2

) =
1

2 sinh
(

V̄bi−V̄ap

2

) ,

so that (81) can now be rewritten

p̄ =
exp(−φ̄)

2 sinh
(

V̄bi−V̄ap

2

) , n̄ =
exp(φ̄)

2 sinh
(

V̄bi−V̄ap

2

) . (82)

Substituting for p̄ and n̄ in (78) we find the following Poisson-Boltzmann equation for φ̄:

∂2φ̄

∂x̄2
=

1

λ2





sinh(φ̄)

sinh
(

V̄bi−V̄ap

2

) + 1



 , (83)

with boundary conditions

φ̄|x̄=0 = 0 and φ̄|x̄=1 = −
V̄bi − V̄ap

2
. (84)

The small λ limit. Now we know that λ ≪ 1. This means that the term in the brackets
on the right-hand side of (83) must be very small, i.e.

sinh(φ̄)

sinh
(

V̄bi−V̄ap

2

) ∼ −1.

The only solution to this approximate equation is

φ̄ ∼ −
V̄bi − V̄ap

2
, (85)

which obviously satisfies the second of the boundary conditions (84) but not the first. The
problem here is that we cannot expect to neglect the highest derivative in an ODE and still
satisfy its boundary conditions so that our naive approximation (85) fails. Problems in which
we are tempted to neglect the highest derivative, but get into trouble doing so, are called
singular perturbation problems. And, as we shall see, their solutions often have boundary
layers in which the solution varies rapidly. Indeed, as we shall show, this is precisely what
happens here and in fact

φ̄ ∼ −
V̄bi − V̄ap

2
for λ ≪ x < 1. (86)
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− V̄bi−V̄ap

2

λ 1
φ̄

Figure 5: Illustration of the solution of (83)-(84) for φ̄ with λ ≪ 1.

That is the approximation only fails in a narrow region of size O(λ) around x̄ = 0 (this is
illustrated in figure 5). If the solution is indeed as we have postulated in figure 5 then we
ought to be able to investigate the rapid transition from φ̄ = 0 at x̄ = 0 to the approximate
solution (86) for x̄ ≫ λ by rescaling x̄ with λ by writing

x̄ = λz

On making this substitution into (83) and (84) we get

∂2φ̄

∂z2
=





sinh(φ̄)

sinh
(

V̄bi−V̄ap

2

) + 1



 with φ̄|z=0 = 0, (87)

and if it is indeed to tend towards the approximate solution (86), for large z, we must impose
the far-field condition

φ̄ → −
V̄bi − V̄ap

2
as z → +∞. (88)

Provided you believe that there is a solution to (87) satisfying the far-field condition (88) it
is now fairly easy to find a good approximation to the current voltage curve for the device.
In fact it turns out that there is a relatively straightforward to show that such a solution
exists provided that V̄bi − V̄ap > 0 by using a phase-plane analysis.

Excercise: Write w = φ̄z and then write the ODE (83a) as two coupled first order au-
tonomous ODEs of the form φ̄z = w and and wz = f(φ̄). Sketch the phase-plane for these
coupled ODEs and show that there is a trajectory linking φ̄ = 0 to a critical point at w = 0,
φ̄ = −(V̄bi − V̄ap)/2 when V̄bi − V̄ap > 0 and hence argue that a solution to the problem
(87)-(88) exists when V̄bi − V̄ap > 0.
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Calculating the current voltage curves (I). Now we know n̄ and p̄ nearly everywhere
in 0 < x̄ < 1 except very close to x̄ = 0. It follows that we can get a very good approximation
to the amount of recombination occuring and hence work out a current voltage curve. Since
φ̄ ∼ (V̄ap − V̄bi)/2 in almost all of 0 < x̄ < 1 it follows from (82) that

n̄ ∼
exp

(

− V̄bi−V̄ap

2

)

2 sinh
(

V̄bi−V̄ap

2

) , p̄ ∼
exp

(

V̄bi−V̄ap

2

)

2 sinh
(

V̄bi−V̄ap

2

) , (89)

The built-in voltage V̄bi. Lets look first at what happens when there is zero solar gener-
ation Ḡ ≡ 0 and zero applied voltage V̄ap = 0 and the device is allowed to reach equilibrium
so that j̄n = j̄p = 0. These assumptions combined with (76a) and (77a) imply that n̄p̄ = N2

i .
On subsituting the values of n̄ and p̄, as determined in (89) with V̄ap = 0, into this relation
gives an equation for V̄bi

sinh2

(

V̄bi

2

)

=
1

4N2
i

.

This can be further simplified by noting that (in all practical applications) Ni the ratio of
the intrinsic carrier density to the doping density is very small which implied that V̄bi is large
and given (approximately) by

V̄bi ∼ 2 ln

(

1

Ni

)

. (90)

Translating this back into dimensional variables (via (68)) this gives

Vbi = 2VT ln

(

Ndop

ni

)

, (91)

which is precisely the result we would get from looking at the band bending and lining up
the Fermi levels (which is reassuring).

Calculating the current voltage curves (II). We now look at the case where the
generation term Ḡ (which is assumed constant) and the applied voltage V̄ap are both non-
zero and attempt to calculate the total current density j̄ = j̄n + j̄p as a function of the
applied voltage. The equations and boundary conditions for the current densities become,
on substituting for n̄ and p̄ from (89) in (76a), (77a), (79b) and (80a),

∂j̄p
∂x̄

= Θ



N2
i −

1

4 sinh2
(

V̄bi−V̄ap

2

)



 + Ḡ, (92)

∂j̄n
∂x̄

= −Θ



N2
i −

1

4 sinh2
(

V̄bi−V̄ap

2

)



− Ḡ, (93)

j̄p|x̄=0 = j̄n|x̄=0, j̄n|x̄=1 = 0. (94)
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Notably the terms on the right-hand side of (92) and (93) are constant so that they are
strightforward to integrate. In particular

[j̄p − j̄n]
1
x̄=0 = 2



Ḡ−Θ





1

4 sinh2
(

V̄bi−V̄ap

2

) −N2
i









so that, since j̄p − j̄n|x̄=0 = 0 (from (79c)) and j̄n|x̄=1 = 0 (from (80c)), it follows that the
dimensionless current density j̄ = j̄n = j̄p is given by

j̄ = j̄p|x̄=1 = 2



Ḡ−Θ





1

4 sinh2
(

V̄bi−V̄ap

2

) −N2
i







 .

Furthermore since V̄bi − V̄ap is typically large (i.e. in dimensional terms many thermal volt-
ages) we can approximate 4 sinh2

(

(V̄bi − V̄ap)/2
)

∼ exp(V̄bi − V̄ap) so that, on substituting
for Vbi from (90), we obtain

j̄ ∼ 2
(

Ḡ−N2
i Θ(eV̄ap − 1)

)

. (95)

Rewriting this in terms of the original dimensional variables, using (68) and (73), we find

j = 2qL

(

G− γn2
i

(

exp

(

Vap

VT

)

− 1

))

. (96)

As we shall show in the §5 this corresponds precisely to the current voltage relation of a
current source strenght 2qLG in parallel with an ideal diode (ideality factor 1) with reverse
saturation current density 2qLγn2

i .

Excercise: Modify the above argument to calculate the current voltage curve where recombi-
nation primarily occurs via traps and can be modelled by a Shockley-Reid-Hall recombination
term as given in (55).

5 Shockley equivalent circuit models of photovoltaic

devices

Drift diffusion models of charge transport, although they are capable of accurately describing
the behaviour of photovoltaics, have the disadvantage of being complicated and hard to solve.
Indeed numerical solutions of these models in the right parameter regimes are frequently very
difficult to obtain with any degree of accuracy. When comparing to experimental data it
is often easier to make use of phenomenological equivalent circuit models. At their very
simplest these consist of a current source term (representing the current generated by solar
radiation) in parallel with a diode (see figure 6(a)) which represents the effects of charge
recombination. Indeed, as we shall show, the current-voltage curve that we obtained from
our approximate analysis of a drift-diffusion model of an np-homojunction (96) is precisely
of this form.
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Figure 6: Shockley equivalent circuits for a solar cell. (a) simple circuit for an n-p diode (b)
the generic Shockley equivalent circuit.

V

I

(a) (b)

I/Is

V/VT

Figure 7: (a) Illustration of the direction of the current flow I through, and voltage V across,
a diode. (b) The current-voltage curve for a diode with ideality Nid = 1.

The current voltage curve of a diode. The current I through a diode is related to the
voltage across it V by the relation

I = Is

[

exp

(

V

NidVT

)

− 1

]

, (97)

where Is and Nid are termed the reverse saturation current and the ideality factor respec-
tively. Since this relation is asymmetric the diode (as a device) has directionality and this
is illustrated in figure 7.

The simple Shockley equivalent circuit (figure 6a). We now use the diode current-
voltage curve, defined in (97), in the simple equivalent circuit in figure 5a. Note that the
diode figure 5a points in the opposite direction to that in figure 7. The current flowing
through the diode, from left to right, is thus

Idiode = −Is

[

exp

(

V

NidVT

)

− 1

]

.
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addiing this current to the current Ig from the current source gives the total current I flowing
through the circuit

I = Ig − Is

[

exp

(

V

NidVT

)

− 1

]

. (98)

Note that this current-voltage curve has exactly the same form as the current-voltage curve
we predicted from the n-p homojunction in §4.4, i.e. (96), provided we identify

Ig = 2AqLG, Is = 2Aqγn2
i , Nid = 1.

Here A is the area of the homojunction so that I = jA. One rather interesting consequence
of assuming that recombination is entirely bimolecular is the prediction that the ideality
factor Nid = 1. If instead we had assumed that the dominant form of recombination were
SRH recombination then we would have found that the ideality factor Nid = 2. Other forms
of recombination give other ideality factors, for example Auger recombination (see [7]) gives
an ideality factor of 3.

Other devices. Whilst our analysis of the n-p homojunction in §4.4 shows that it is
appropriate to fit current voltage data for such a device to an equivalent circuit model it
is not obvious that this approach is appropriate for other devices. Roughly speaking if
the device has planar material and doping interfaces that run parallel to the contacts an
equivalent ciruit description will provide a consistent approximation of its behaviour. In [2]
an analysis of a planar organic bulk heterojunction is made which results in a current-voltage
curve that is well approximated by a Shockley equivalent circuit whilst in [3] a similar type
analysis is conducted for a planar (tri-layer) perovskite cell. It should be emphasised that
cells with non-planar geometry cannot usually be modelled by a Shockley equivalent circuit
(e.g. heterogeneous organic bulk heterojunctions).

The generic Shockley equivalent circuit (figure 6b). The generic Shockley equivalent
circuit contains a shunt resistance Rp in parallel with a diode and a current source. The
three parallel elements are connected in series with a resistor Rs. By splitting the voltage
into two parts: V1 (the voltage drop acoss diode, shunt resistance and current source) and
V2 the voltage drop across Rs, we obtain the following set of equations

V = V1 + V2,

Idiode = −Is

[

exp

(

V1

NidVT

)

− 1

]

Current through diode,

Ishunt = −
V1

Rp
Current through shunt resistor,

I = Ig + Ishunt + Idiode Conservation of current (Kirchoff),

V2 = −IRs Current through series resistor.

30



Figure 8: Fitting an equivalent circuit model to current-voltage data from bilayer hetero-
junction organic solar cells (see [8]). Filled symbols represent cells under illumination open
symbols cells in the dark. Notice the current has been plotted on a log scale.

It is straightfoward to combine these expressions to obtain a single implicit expression for
the current voltage curve

I = Ig − Is

[

exp

(

V + IRs

NidVT

)

− 1

]

−
V + IRs

Rp

. (99)

What is the physical basis for series and shunt resistances. We have already seen
that charge recombination in an n-p homojunction leads to the diode like behaviour of this
device. So what processes give rise to the shunt resistance and the series resistance used
to model real photovoltaic devices? The series resistance Rs can arise as a result of the
resistance of the contacts or because of the resistance of the semiconductor itself. The latter
effect can be fairly readily incorporated into the analysis that we conducted in §4.4. The
shunt resistance is in some sense more interesting because it usually arises from shorting
between the contacts. This might arise because there are regions where one of the doped
layers are absent and the other spans the entire width of the cell or because dendrites have
grown directly from one contact to the other. In either case a low value of Rp can be
attributed to some fault in the manufacture of the cell. This is therefore clearly something
to look out for when fitting current voltage curves to an equivalent circuit.

Use of equivalent circuits models to fit to real data. Here we show a couple of
examples of fits to real current-voltage data. In figure 8 we show fitted data taken from
Potscavage et al. [8] for current-voltage curves measured from three different designs of
bilayer heterojunction organic solar cells. In the cases of the data plotted with triangles and
squares the ideality factor Nid ≈ 2 corresponding to SRH recombination, while in the case
of data plotted with circles Nid ≈ 1.7 In figure 9 we show a comparison of an experimental
current voltage curve obtained from a perovskite cell and the fit using a simple equivalent
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Figure 9: Fitting an equivalent circuit model to current-voltage data from a perovskite cell
(prepared by Giles Eperon). From the data it is inferred that the ideality factor Nid ≈ 3.
For more details see [3]. Note that the current has been defined in an opposite sense to that
in the text (to agree with the text the figure should be flipped about the V -axis).

circuit (taken from [3]). Here the ideality factor is Nid ≈ 3.Whilst this high ideality factor
might be attributable to Auger recombination we believe it is more likely related to the
hysteretic behaviour of perovskite cells.
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